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The MNIST Dataset
• 70,000 28x28 pixel 

digitized images of 
handwritten digits 0 
through 9

• Considered a standard 
benchmark dataset

• Small enough to
• Fit in memory
• Run on a modest machine

• Large enough to
• Span a reasonable range of 

appearances 
• Solve an interesting 

problem



Rules:
How might we as 

humans describe the 
difference between 
handwritten digits?
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Rule-Based Learning
• Leverage the human to provide labeled training data (example 

images matched to labels)—Defines the ground truth
• Leverage the human to define a set of features that are 

discriminatory—Defines the feature space
• Leverage the human to use those features to discriminate 

between digits—Defines the decision boundary
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Machine Learning:
How can we leverage 

computers to sift 
through the features 

and learn to 
discriminate between 
handwritten digits?



Classical Machine Learning: 
Feature Extraction->Classification
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Supervised Classification
• Leverage the human to provide labeled training data (example 

images matched to labels)—Defines the ground truth
• Leverage the human to define a set of features that are expected 

to be discriminatory—Defines the feature space
• Leverage the computer to learn how to use those features to 

discriminate between digits—Defines the decision boundary
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Feature 2 • Misclassifications:
• Are they due to a feature space 

which is not descriptive enough?
• Are they due to a decision 

boundary that is not appropriate 
for the space? 

• Are they due to not enough 
training data?

• Are they just difficult samples to 
classify?
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Deep Learning: 
How can we leverage 

computers to learn 
the features AND 
how to use those 

features to 
discriminate between 
handwritten digits?
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Deep Learning:
Feature Extraction & Classification
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Neural Networks…

• Leverage computer to 
quickly process many 
samples
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