
Convolutional Neural 
Networks (CNNs): 

Basic Structure
Laura E. Boucheron

College of Engineering Klipsch School of Electrical and 
Computer Engineering



A Visualization of our MNIST 
network

• The Sequential model allows you to stack layers in a 
linear fashion



Types of Layers



Convolutional Layers (Convolution2D)

• Learn some 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝐾𝐾 × 𝐾𝐾 × 𝐶𝐶 filters (and 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 biases)
• 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 is the total number of filters in the current layer
• 𝐾𝐾 is the kernel size
• 𝐶𝐶 is the number of channels over which the filter operates

• Input is some 𝑁𝑁𝑖𝑖 × 𝑁𝑁𝑖𝑖 × 𝐶𝐶 tensor (think multidimensional 
image)

• 𝑁𝑁𝑖𝑖 is the spatial dimension
• 𝐶𝐶 is the number of channels 

• Output are some 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑁𝑁𝑐𝑐 × 𝑁𝑁𝑐𝑐 filtered 
images, also commonly called “feature 
maps” or “activations”

• 𝑁𝑁𝑐𝑐 is the spatial dimension
• Commonly, 𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑖𝑖 − 𝐾𝐾 − 1 since the 

filtered output at the boundaries of the 
image is less reliable than at the center

𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖

𝐾𝐾

𝐾𝐾



Convolutional Layers (Convolution2D)

• 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 number of filters in the current layer 32
• 𝐾𝐾 kernel size 3
• 𝐶𝐶 number of channels over which the filter operates 1 
• 𝑁𝑁𝑖𝑖 spatial dimension of the input 28
• 𝑁𝑁𝑐𝑐 spatial dimension of the output 26

• conv1
• Learn 32, 3x3x1 filters

• Input is the 28x28x1 
image

• Output are the 32 
26x26 activations

conv1



Convolutional Layers (Convolution2D)

• 𝑀𝑀𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 number of filters in the current layer 32
• 𝐾𝐾 kernel size 3
• 𝐶𝐶 number of channels over which the filter operates 32 
• 𝑁𝑁𝑖𝑖 spatial dimension of the input 26
• 𝑁𝑁𝑐𝑐 spatial dimension of the output 24

• conv2
• Learn 32, 3x3x32 

filters
• Input is the 26x26x32 

activations
• Output are 32 24x24 

activations

conv2



• Hierarchical representation of image content
• First layer often converges to filters that highlight oriented 

edges
• Second layer can combine oriented edges and 

represent more complex structures such as corners, 
circles, or other shapes

• Third layer can combine those shapes and 
learn to represent even more abstract 
structures 

Convolutional Layers (Convolution2D)

Figures from: Zeiler, M. D., & Fergus, R. (2014, September). 
Visualizing and understanding convolutional networks. In 
European conference on computer vision (pp. 818-833).



• Reduce the spatial resolution via subsampling, usually 
after a convolutional layer

• Pool size 𝑃𝑃
• Input is some 𝑁𝑁𝑖𝑖 × 𝑁𝑁𝑖𝑖 × 𝐶𝐶 image

• 𝑁𝑁𝑖𝑖 is the spatial dimension of the input
• 𝐶𝐶 is the number of channels

• Output are some 𝐶𝐶 𝑁𝑁𝑖𝑖
𝑃𝑃

× 𝑁𝑁𝑖𝑖
𝑃𝑃

subsampled activations

Pooling Layers (MaxPooling2D)



• 𝑃𝑃 pool size 2
• 𝑁𝑁𝑖𝑖 spatial dimension of the input 24
• 𝐶𝐶 number of channels 32

Pooling Layers (MaxPooling2D)

maxpool1

• maxpool1
• Learn nothing
• Input is the 24x24x32 

activations
• Output are the 32 

12x12 subsampled 
activations

𝑁𝑁𝑖𝑖
𝑃𝑃 =

24
2 = 12



• Reduce the spatial resolution via subsampling
• Reduces the computational complexity (fewer pixels to filter)
• Contributes to the scale invariance and hierarchical nature of the network

• Multiple forms of pooling
• Max pooling (common): take maximum value within 𝑃𝑃 × 𝑃𝑃 pooling window
• Average pooling: take average value within 𝑃𝑃 × 𝑃𝑃 pooling window
• Others

Pooling Layers (MaxPooling2D)

𝑁𝑁𝑖𝑖

𝑁𝑁𝑖𝑖 𝑃𝑃

𝑃𝑃

Average pool

Max pool

𝐾𝐾 = 64

𝑁𝑁𝑖𝑖 =256

(not to scale)



• Learn some 𝑀𝑀𝐹𝐹𝐹𝐹 nodes (𝑀𝑀𝐹𝐹𝐹𝐹 � 𝑁𝑁1 � 𝑁𝑁2 � 𝑁𝑁3 weights 
and 𝑀𝑀𝐹𝐹𝐹𝐹 biases) associated with a standard fully 
connected 1D neural network

• 𝑀𝑀𝐹𝐹𝐹𝐹 is the number of nodes in the current fully 
connected layer

• 𝑁𝑁1, 𝑁𝑁2, and 𝑁𝑁3 are the dimensions of the input
• Input is some 1 × 𝑁𝑁1 � 𝑁𝑁2 � 𝑁𝑁3 tensor of activations 

from the previous layer
• The Flatten function “flattens” the 𝑁𝑁1 × 𝑁𝑁2 × 𝑁𝑁3

tensor output from the previous layer to a 1 × 𝑁𝑁1 � 𝑁𝑁2 �
𝑁𝑁3 tensor

• Output are some 𝑀𝑀𝐹𝐹𝐹𝐹 activations

Fully Connected (Dense)



• 𝑀𝑀𝐹𝐹𝐹𝐹 number of nodes in the current fully connected layer 128
• 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3 dimensions of the input 12, 12, 32

Fully Connected

• FC1
• Learn 128 nodes

• Input are the 12x12x32 
activations

• Output are the 128 
activations

FC1



• 𝑀𝑀𝐹𝐹𝐹𝐹 number of nodes in the current fully connected layer 10
• 𝑁𝑁1, 𝑁𝑁2, 𝑁𝑁3 dimensions of the input 1, 128, 1

Fully Connected

• FC1
• Learn 10 nodes

• Input are the 1x128x1 
activations

• Output are the 128 
activations

FC1

(1@)



Activations



• Included as the activation option in the 
Convolution2D and Dense layers

• Common activation for 
convolutional layers is the 
rectified linear unit (ReLU), 
activation='relu'

• Clips negative values to 0
• Identity for positive values

• Common activation for output of classifier network is 
the softmax, activation='softmax'

• Normalizes the input to probabilities of class membership

Activations

Input

ReLU output

Slope=1



Training Parameters



Loss Functions
• The loss function is THE metric that the NETWORK USES to train
• The loss function should somehow compare the current 

predicted labels to the ground truth labels
• Should have good computational characteristics (e.g., doesn’t overflow)
• A common loss function is the cross entropy
loss='categorical_crossentropy'

�𝑦𝑦
Predicted
Label

Ground truth

Loss 
Function

𝑦𝑦

error

backpropagation



Optimizers
• Optimizers control adaptation of the parameters

• Given the error, you know which direction to adapt the learned 
weights in backpropagation

• How exactly you adapt those weights and how 
“fast” you adapt them is the job of the optimizer

• The “Adam” optimizer is pretty good general-
purpose optimizer, optimizer='adam'

�𝑦𝑦
Predicted
Label

Ground truth

Loss 
Function

𝑦𝑦

error

backpropagation



Metrics
• Metrics are the metrics WE are interested in
• Generally are some form of accuracy 
metrics=['accuracy']

• Can also be any of the loss functions

�𝑦𝑦
Predicted
Label

Ground truth

Metric 
Function

𝑦𝑦

Accuracy



Batches and Epochs
• We need to specify how long we are willing to wait for our 

network to train
• We don’t expect to reach a loss of 0 (implying an accuracy of 

100%)
• May other simulations invoke the notion of an “iteration”
• We cannot necessarily operate on our entire training set at 

once (due to memory constraints)
• Batch: break up the training data into smaller, more manageable 

chunks (this is where the “stochastic” in stochastic gradient descent 
comes in), we specify the size of the batches with the 
batch_size parameter

• Epoch: however many batches are needed to visit every training 
sample once, i.e., an epoch processes 

𝑁𝑁𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠

𝑏𝑏𝑏𝑏𝑏𝑏𝑐𝑐𝑏_𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠
batches

• We specify the maximum number of epochs with the 
epochs parameter



But wait...
There’s more!!!!



There’s more!?!?!
• There are many other options available:

• Other layer types
• Other activation functions
• Other loss functions
• Other optimizers
• Other options in all of the above

• Check out the keras documentation at https://keras.io
for more details.

https://keras.io/

	Convolutional Neural Networks (CNNs): Basic Structure
	A Visualization of our MNIST network
	Types of Layers
	Convolutional Layers (Convolution2D)
	Convolutional Layers (Convolution2D)
	Convolutional Layers (Convolution2D)
	Convolutional Layers (Convolution2D)
	Pooling Layers (MaxPooling2D)
	Pooling Layers (MaxPooling2D)
	Pooling Layers (MaxPooling2D)
	Fully Connected (Dense)
	Fully Connected
	Fully Connected
	Activations
	Activations
	Training Parameters
	Loss Functions
	Optimizers
	Metrics
	Batches and Epochs
	But wait...�There’s more!!!!
	There’s more!?!?!

